- Kogiso, S.; Wada, K.; Munakata, K. Isolation of Nematocidal Polyacetylenes from Carthamus tinctorius L. Agric. Biol. Chem. 1976, 40, 2085-2089.
- Light, D. Personal communication, 1989.
- Maddox, D. M. Introduction, Phenology, and Density of Yellow Starthistle in Coastal, Intercoastal and Central Valley Situations in California. Agric. Res. Results (West Ser.) 1981, ARR-W-20.
- Maddox, D. M.; Mayfield, A. Yellow starthistle infestations are on the increase. Calif. Agric. 1985, 39 (11 & 12), 10-12.
- Maddox, D. M.; Sobhian, R. Field Experiment to Determine Host Specificity and Oviposition Behavior of Bangasternus orientalis and Bangasternus fausti (Coleoptera: Curculionidae), Biological Control Candidates for Yellow Starthistle and Diffuse Knapweed. Environ. Entomol. 1987, 16, 645-648.
- Maddox, D. M.; Mayfield, A.; Poritz, N. H. Distribution of Yellow Starthistle (Centaurea solstitialis) and Russian knapweed (Centaurea repens). Weed Sci. 1985, 33, 315-327.
- Maddox, D. M.; Sobhian, R.; Joley, D. B.; Mayfield, A.; Supkoff, D. New biological control for yellow starthistle. *Calif.* Agric. 1986, 40 (11 & 12), 4-5.
- Ney, P.; Boland, W. Biosynthesis of 1-alkenes in higher plants. A model study with the composite *Carthamus tinctorius* L. *Eur. J. Biochem.* 1987, 162, 203-211.
- Nishimura, K.; Horibe, I.; Tori, K. Conformations of 10-Membered Rings in Bicyclogermacrene and Isobicyclogermacrene. *Tetrahedron* 1973, 29, 271-274.
- Takahashi, K.; Muraki, S.; Yoshida, T. Synthesis and Distribution of (-)-Mintsulfide, a Novel Sulfur-containing Sesquiterpene. Agric. Biol. Chem. 1981, 45, 129-132.
- Turner, C. E.; Sobhian, R.; Maddox, D. M. Host Specificity Studies of Chaetorellia australis (Diptera: Tephriditae), a Prospective Biological Control Agent for Yellow Starthistle, Centaurea solstitialis (Asteraceae). Proceedings, VII Inter-

national Symposium on Biological Control of Weeds, 6–11 March 1988, Rome, Italy.

Received for review May 15, 1989. Accepted November 2, 1989.

Registry No. 2-Pentanone, 107-87-9; hexanal, 66-25-1; (E)-2-hexenal, 6728-26-3; 3-methylpentanol, 589-35-5; 2-methylbutanoic acid, 116-53-0; (Z)-3-hexenol, 928-96-1; ethylbenzene, 100-41-4; hexanol, 25917-35-5; benzaldehyde, 100-52-7; (E)-2heptenal, 18829-55-5; oct-1-en-3-ol, 3391-86-4; 6-methylhept-5en-2-one, 110-93-0; octanal, 124-13-0; myrcene, 123-35-3; phenylacetaldehyde, 122-78-1; limonene, 138-86-3; 2-phenylethanol, 60-12-8; nonanal, 124-19-6; (E)-2-nonenal, 18829-56-6; (Z)-3-hexenyl butanoate, 16491-36-4; decanal, 112-31-2; (E,E)-2,4nonadienal, 5910-87-2; benzothiazole, 95-16-9; 1-tridecene, 2437-56-1; α -cubebene, 17699-14-8; β -damascenone, 23726-93-4; cyclosatirene, 22469-52-9; α -copaene, 3856-25-5; β -bourbonene, 5208-59-3; β-cubebene, 13744-15-5; 1-tetradecene, 1120-36-1; caryophyllene, 87-44-5; β -copaene, 18252-44-3; (E)- α -bergamotene, 13474-59-4; (E)-\$\beta\$-farnesene, 18794-84-8; humulene, 6753-98-6; β -santalene, 511-59-1; α -muurolene, 10208-80-7; germacrene D, 23986-74-5; β-selinene, 17066-67-0; 1-pentadecene, 13360-61-7; bicyclogermacrene, 24703-35-3; α -muurolene, 10208-80-7; γ cadinene, 39029-41-9; calamenene, 483-77-2; δ-cadinene, 483-76-1; calacorene, 38599-17-6; (E,Z,E)-1,3,5,11-tridecatetraene-7,9diyne, 63366-81-4; (E,E,E)-1,3,5,11-tridecatetraene-7,9-diyne, 17091-00-8; (Z,E,E)-1,3,5,11-tridecatetraene-7,9-diyne, 124604-43-9; (Z,Z)-1,8,11-heptadecatriene, 56134-03-3; (Z,E)-1,3,11-(Z, Z, Z)-1,8,11,14tridecatriene-5,7,9-triyne, 124604-44-0; heptadecatetraene, 10482-53-8; (Z)-1,11-tridecadiene-3,5,7,9tetrayne, 59950-58-2; (E,E)-1,3,11-tridecatriene-5,7,9-triyne, 50739-51-0; 1-heptadecene, 6765-39-5; (E)-1,11-tridecadiene-3,5,7,9tetrayne, 26130-86-9; mint sulfide, 72445-42-2; (Z)-1,3-tridecadiene-5,7,9,11-tetrayne, 124604-45-1; (E,E)-1,3,5-tridecatriene-7,9,11-triyne, 6581-77-7; (E)-1,3-tridecadiene-5,7,9,11-tetrayne, 3760-28-9; 1-tridecene-3,5,7,9,11-pentayne, 2060-59-5.

Stereoisomeric Flavor Compounds. 33. Multidimensional Gas Chromatography Direct Enantiomer Separation of γ -Lactones from Fruits, Foods, and Beverages

Armin Mosandl,* Uwe Hener, Ute Hagenauer-Hener, and Angelika Kustermann

Institut für Lebensmittelchemie, Universität Frankfurt, D-6000 Frankfurt/Main, West Germany

Chiral γ -lactones from the raw flavor extract of strawberries and of some commercially available fruit-containing foods and beverages were directly stereoanalyzed by multidimensional gas chromatography (MDGC), employing heart-cutting techniques from DB 1701 as the preseparation column onto heptakis(3-O-acetyl-2,6-di-O-pentyl)- β -cyclodextrin as the chiral stationary phase.

Chirality evaluation is a convenient method to differentiate between flavor compounds of natural origin and synthetic racemates, if comprehensive data about optical purity and fruit-specific distribution are available (Mosandl et al., 1988; Gessner et al., 1988). Recently we reported on the first direct chirospecific analysis of chiral γ -lactones from foods and other commercially available fruit-containing preparations by offline coupling of HPLC with HRGC on modified chiral α -cyclodextrin as a suitable chiral stationary phase (Mosandl and Kustermann, 1989b). This paper reports on multidimensional gas chromatography (MDGC) (Schomburg et al., 1984) as a very sensitive method of high selectivity to differentiate γ -lactone mirror images from complex flavor extracts, using heart-cutting techniques from DB-1701 as the nonchiral preseparation col-

The influence of optical isomerism to odor quality is well appreciated (Russell and Hills, 1971; Friedman and Miller, 1971; Ohloff, 1986; Mosandl, 1982), and in our opinion, research on the structure-function relationships of flavor substances will become increasingly important.

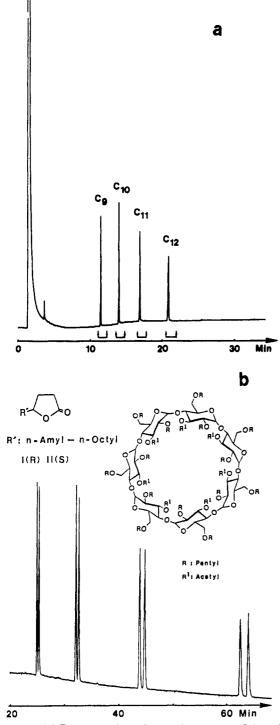
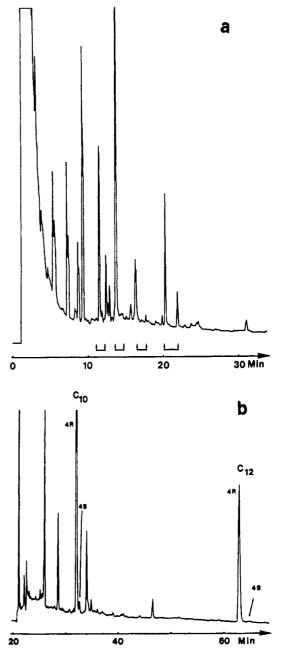



Figure 1. (a) Preseparation of racemic γ -nona- (C_9) , γ -deca-(C_{10}), γ -undeca- (C_{11}) , and γ -dodecalactone (C_{12}) as a standard mixture on DB-1701. Conditions: 0.9 bar of H₂; program, 140 °C, 2 min isothermal, 5 °C/min \rightarrow 200 °C; back-flush after 33 min; elution intervals ($\uparrow\uparrow$), transferred onto the main column. (b) Transfer of racemic γ -nona- (C_9) , γ -deca- (C_{10}) , γ -undeca- (C_{11}) , and γ -dodecalactone (C_{12}) from DB-1701 preseparation (a) onto the main column and base-line resolution with Lipodex D as the chiral stationary phase. Conditions: 0.75 bar of H₂; program, 140 °C, 10 min isothermal, 5 °C/min \rightarrow 170 °C; order of elution assigned with optically pure references (Günther, 1988; Mosandl and Günther, 1989).

umn and transfer onto heptakis(3-O-acetyl-2,6-di-O-pentyl)- β -cyclodextrin as the appropriate chiral stationary phase.

EXPERIMENTAL SECTION

Optically Pure References. The structure and properties of γ -lactone enantiomers are reported in previous papers

Figure 2. (a) Raw strawberry extract, preseparated with DB-1701. Conditions: see Figure 1a. (b) Chirality evaluation of γ deca- (C₁₀) and γ -dodecalactone (C₁₂) from strawberries transferred from DB-1701 preseparation (a) onto the main column. Conditions: see Figure 1b.

(Günther, 1988; Mosandl and Günther, 1989a). The order of elution from the modified chiral α -cyclodextrin and β -cyclodextrin phase is assigned by optically pure references: I (R), II (S) (Günther, 1988; König et al., 1988; Mosandl et al., 1989a).

Instrumentation. Analyses were performed with a Siemens SiChromat 2 multidimensional gas chromatography system containing two ovens with independent temperature programs, equipped with two flame ionization detectors (FID), and the "live-switching" coupling piece: injection mode, splitless, 0.6 min; injection temperature, 200 °C, detection temperature, 220 °C.

Separation conditions: carrier gas, H₂; preseparation pressure, $P_A = 0.9$ bar; main separation pressure, $P_M = 0.75$ bar.

Preseparation. A fused silica retention gap, 10 m \times 0.25 mm (i.d.), deactivated according to Grob (1987), coupled with a nonchiral DB-1701 (86% dimethyl-7% cyanopropyl-7% phenylpolysiloxane) chemically bonded fused silica column, 15 m \times 0.25 mm (i.d.) with 1- μ m film thickness (J&W Scientific),

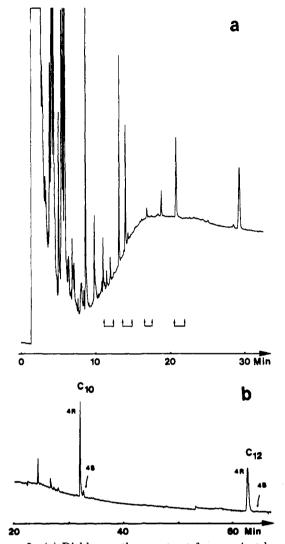
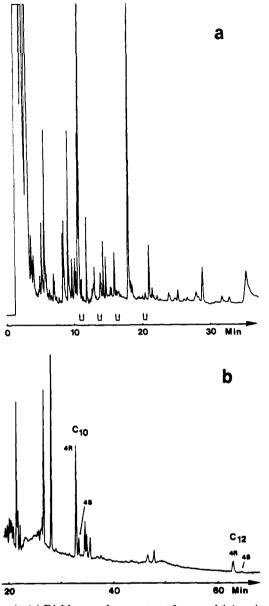


Figure 3. (a) Dichloromethane extract from apricot brandy, purchased from the market, analyzed on a DB-1701 precolumn. Conditions: see Figure 1a. (b) Chirospecific analysis of γ -deca- (C₁₀) and γ -dodecalactone (C₁₂) from the distillate of apricot brandy (a), transferred to stereoanalysis with Lipodex D. Conditions: see Figure 1b.

was used. Program: 140 °C, 2 min isothermal, 5 °C/min \rightarrow 200 °C, back-flush after 33 min.


Main Separation. A pyrex glass capillary column, 38 m \times 0.2 mm (i.d.), coated with heptakis(3-O-acetyl-2,6-di-O-pentyl)- β -cyclodextrin (Lipodex D) as the chiral stationary phase (König et al., 1988) for the direct resolution of optically active γ -lactones was used (Mosandl and Kustermann, 1989b). Program: 140 °C, 10 min isothermal, 5 °C/min \rightarrow 170 °C.

Sample Preparation. General Procedure. The quantity of foods to be analyzed depends on their genuine concentration of γ -lactones. Solid samples, e.g., 1-2 kg of freshly harvested strawberries, are homogenized, diluted with water, and centrifuged at 5000g for 30 min. The supernatant is exhaustively extracted with dichloromethane or pentane-dichloromethane on the apparatus of Likens and Nickerson or modified techniques. For standard controlled extraction, a suitable, noninterferring γ -lactone (1 ppm) as an internal standard is recommended.

The organic layer is dried over Na_2SO_4 (anhydrous) and concentrated to about 25 mL, on a Vigreux column. If preservatives (sorbic acid or benzoic acid) are detectable, these acids are removed by Na_2CO_3 (5%). After being dried and concentrated to 0.5 mL, the solution is ready to use for MDGC.

Nonalcoholic Liquid Samples. Fruit juices and other fruitcontaining beverages (1-2L) are diluted with water and worked up in a similar manner.

Alcoholic Beverages. They are diluted with water to an alcohol content of about 20% before extraction with dichlo-

Figure 4. (a) Dichloromethane extract from multivitamin fruit juice, purchased from the market and analyzed on a DB-1701 precolumn. Conditions: see Figure 1a. (b) Stereodifferentiation of γ -deca- (C₁₀) and γ -dodecalactone (C₁₂) from multivitamin fruit juice, transferred from a DB-1701 precolumn (a) onto Lipodex D as the chiral stationary phase. Conditions: see Figure 1b.

romethane or pentane-dichloromethane. Liquors are distilled first; subsequently the diluted distillate is worked up.

RESULTS AND DISCUSSION

Despite the importance of γ -lactones in flavors of natural origin, their stereochemical structure-function relationships have remained unknown until now. Recently, the chiroptical and sensory properties of their mirror images were described (Günther, 1988; Mosandl and Günther, 1989a) and the first chirospecific methods (via the diastereomeric esters) evaluated (Mosandl et al., 1988).

Meanwhile, the analytical γ -lactone enantiomer separation has been achieved and we have reported on the first direct chirospecific analysis of γ -lactones from foods and some other commercially available fruit-containing preparations by off-line coupling of HPLC with HRGC on modified chiral $\alpha(\beta)$ -cyclodextrins as suitable chiral stationary phases (Mosandl and Kustermann, 1989b; Mosandl et al., 1989b).

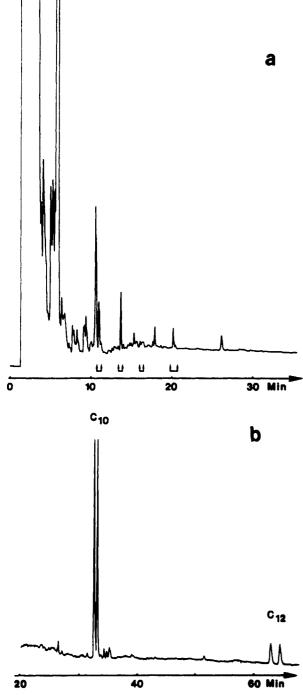
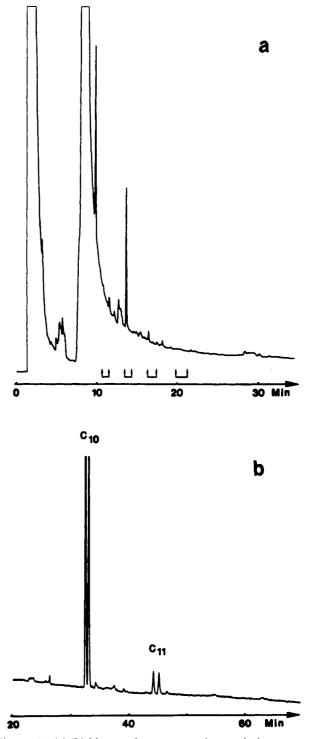



Figure 5. (a) Dichloromethane extract from an orange/ maracuja fruit nectar, purchased from the market and analyzed with a DB-1701 precolumn. Conditions: see Figure 1a. (b) Enantiodifferentiation of γ -deca- (C₁₀) and γ -dodecalactone (C₁₂) from an orange/maracuja fruit nectar (a), transferred onto the chiral main column Lipodex D. Conditions: see Figure 1b.

However, due to the complexity of natural flavor extracts, an effective preseparation has to be assumed as an indispensable prerequisite for the direct enantiodifferentiation of γ -lactones from flavor matrices. MDGC is demonstrated with racemic mixtures of γ -nona- (C₉), γ -deca- (C₁₀), γ -undeca- (C₁₁), and γ -dodecalactone (C₁₂) by DB-1701 preseparation (Figure 1a) and transfer onto the main column, coated with heptakis(3-Oacetyl-2,6-di-O-pentyl)- β -cyclodextrin as the chiral stationary phase. Base-line resolution is achieved in all four cases (Figure 1b).

Due to their enzymatic pathways, chiral aroma compounds from fruits and other natural sources are char-

Figure 6. (a) Dichloromethane extract from a fruit preparation with passion fruits, analyzed with nonchiral precolumn DB-1701. Conditions: see Figure 1a. (b) Racemic γ -deca- (C₁₀) and racemic γ -undecalactone (C₁₁), stereoanalyzed after transfer from DB-1701 (a) onto Lipodex D. Conditions: see Figure 1b.

acterized by definite and fruit-specific distribution of their enantiomers. From freshly harvested strawberries, γ decalactone and γ -dodecalactone are detected in a 70:30 ratio and with rather high optical purity in favor of the 4*R*-configurated γ -lactones: γ -C₁₀, 4*R*, >98% ee; γ -C₁₂, 4*R*, >99% ee (cf. Figure 2a,b).

The chirospecific analyses of γ -decalactone and γ dodecalactone from the distillate of an apricot brandy indicate optical purities similar to those of strawberries (Figure 3a,b).

The distribution of γ -deca- and γ -dodecalactone enan-

Stereoisomeric Flavor Compounds

tiomers, isolated from a commercially available multivitamin fruit juice, is documented in Figure 4a,b.

On the other hand, the natural occurrence of racemic γ -lactones has not yet been observed. Therefore, the detection of a racemic γ -lactone from fruit-containing foods indicates the addition of synthetic flavorings, while chiral aroma compounds from natural sources reflect the fruit-specific distribution of their enantiomers (Mosandl et al., 1988, 1989b). By MDGC analysis of γ -lactones from an orange/maracuja nectar (Figure 5a,b) and from a fruit preparation with passion fruits (Figure 6a,b), the addition of racemic γ -lactones is identified, in contrast to legal regulations of German food law.

CONCLUSION

Multidimensional gas chromatography employing heartcutting techniques from DB-1701 as the preseparation column onto heptakis(3-O-acetyl-2,6-di-O-pentyl)- β cyclodextrin is proven to be a powerful method for the direct enantiomer separation of chiral γ -lactones from complex multicomponent mixtures without any further cleanup or derivatization procedures. The described MDGC technique is of considerable interest with regard to the importance of chiral γ -lactones as key aroma compounds and the legal interpretation of their addition to foods and beverages.

ACKNOWLEDGMENT

We are indebted to the Deutsche Forschungsgemeinschaft and to the Fonds der Chemischen Industrie for financial support. The skillful technical assistance of F. Dettmar is gratefully acknowledged.

LITERATURE CITED

Friedman, L.; Miller, J. G. Odor Incongruity and Chirality. Science (Washington, D.C.) 1971, 172, 1044.

- Gessner, M.; Deger, W.; Mosandl, A. Stereoisomeric Flavour Compounds XXI. Chirale Aromastoffe einiger Lebensmittel. Z. Lebensm. Unters.-Forsch. 1988, 186, 417.
- Grob, K.; Schilling, B. Uncoated capillary column inlets (retention gaps) in gas chromatography. J. Chromatogr. 1987, 391, 3.

- Günther, C. Reindarstellung und chirospezifische Analyse von γ -Lactonen. Dissertation, University of Würzburg, 1988.
- König, W. A.; Lutz, S.; Colberg, C.; Schmidt, N.; Wenz, G.; von der Bey, E.; Mosandl, A.; Günther, C.; Kustermann, A. Cyclodextrins as Chiral Stationary Phases in Capillary Gas Chromatography, Part III: Hexakis(3-O-acetyl-2,6-di-O-pentyl)-αcyclodextrin. HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun. 1988, 11, 621.
- Mosandl, A. Struktur und Geruch substituierter Glycidsäureester. Habilitation Thesis, University of Würzburg, 1982.
- Mosandl, A.; Günther, C. Stereoisomeric Flavor Compounds. 20. Structure and Properties of γ -lactone Enantiomers. J. Agric. Food Chem. 1989a, 37, 413.
- Mosandl, A.; Kustermann, A. Stereoisomeric Flavour Compounds. XXX. HRGC-Analyse chiraler γ-Lactone aus Getränken und Fruchtzubereitungen. Z. Lebensm. Unters.-Forsch. 1989b, 189, 212.
- Mosandl, A.; Günther, C.; Gessner, M.; Deger, W.; Singer, G.; Heusinger, G. Structure and Stereoanalysis of Chiral Flavour Substances. In *Bioflavor* '87; Schreier, P., Ed.; de Gruyter: Berlin, New York, 1988; pp 55-74.
- Mosandl, A.; Palm, U.; Günther, C.; Kustermann, A. Stereoisomeric Flavour Compounds. XXV. Stereodifferentiation of enantiomeric γ-lactones by HRGC on chiral stationary phases. Z. Lebensm. Unters.-Forsch. 1989a, 188, 148.
- Mosandl, A.; Kustermann, A.; Palm, U.; Dorau, H.-P.; König, W. A. Stereoisomeric flavour compounds. XXVIII. Direct chirospecific HRGC-analysis of natural γ-lactones. Z. Lebensm. Unters.-Forsch. 1989b, 188, 517.
- Ohloff, G. Chemistry of odor stimuli. Experientia 1986, 42, 271.
- Russell, G. F.; Hills, J. I. Odor Differences between Enantiomeric Isomers. Science (Washington, D.C.) 1971, 172, 1043.
- Schomburg, G.; Husmann, H.; Hübinger, E.; König, W. A. Multidimensional Capillary Gas Chromatography-Enantiomeric Separations of Selected Cuts Using a Chiral Second Column. HRC CC, J. High Resolut. Chromatogr. Chromatogr. Commun. 1984, 7, 404.

Received for review March 27, 1989. Accepted August 20, 1989.

Registry No. $(4R) - \gamma$ -Decalactone, 107797-26-2; (4R)- γ -dodecalactone, 69830-91-7; (4S)- γ -dodecalactone, 69830-92-8; (4S)- γ -decalactone, 107797-27-3; γ -nonalactone, 104-61-0; γ -decalactone, 706-14-9; γ -undecalactone, 104-67-6; γ -dodecalactone, 2305-05-7.